1. Wolf Kishner Reduction Mechanism:

Purpose: The Wolf Kishner reduction converts carbonyl compounds (aldehydes or ketones) into alkanes by reducing the carbonyl group to a methylene group (-CH₂-).

Mechanism:

  1. Formation of Hydrazone:

    • Step 1: The carbonyl compound reacts with hydrazine (N₂H₄) to form a hydrazone intermediate.

      • R₂C=O + N₂H₄ ⟶ R₂C=NNH₂ + H₂O

  2. Formation of Alkoxide Intermediate:

    • Step 2: Sodium or potassium hydroxide (NaOH or KOH) is added, leading to the formation of an alkoxide ion (R₂C=N-NH₂⁺) through deprotonation.

      • R₂C=NNH₂ + OH⁻ ⟶ R₂C=N-NH₂⁺ + H₂O

  3. Thermal Decomposition:

    • Step 3: Heating the reaction mixture induces thermal decomposition, resulting in the loss of nitrogen gas (N₂) and the formation of the reduced alkane.

      • R₂C=N-NH₂⁺ ⟶ R₂CH₂ + N₂ + H₂O

2. Wittig Reaction Mechanism:

Purpose: The Wittig reaction converts aldehydes or ketones into alkenes using a phosphorus ylide.

Mechanism:

  1. Formation of Phosphonium Ylide:

    • Step 1: Triphenylphosphine (Ph₃P) reacts with an alkyl halide (R'-X) to form a phosphonium salt (Ph₃P^+R'-X^-).

      • Ph₃P + R'-X ⟶ Ph₃P^+R'-X^-

  2. Formation of Wittig Reagent:

    • Step 2: The phosphonium salt reacts with a strong base (e.g., BuLi) to form a phosphorus ylide (Ph₃P=CHR').

      • Ph₃P^+R'-X^- + BuLi ⟶ Ph₃P=CHR' + LiX + Ph₃P

  3. Olefin Formation (Wittig Reaction):

    • Step 3: The phosphorus ylide (Ph₃P=CHR') reacts with the carbonyl compound to form an oxaphosphetane intermediate.

      • R₂C=O + Ph₃P=CHR' ⟶ R₂C=CHR' + Ph₃PO

  4. Olefin Formation:

    • Step 4: The oxaphosphetane intermediate undergoes an E2 elimination reaction, resulting in the formation of an alkene.

      • R₂C=CHR' ⟶ R₂CH=CH₂ + Ph₃P=O

PDF Download